tessera_ui/component_tree/node.rs
1use std::{
2 any::TypeId,
3 collections::HashMap,
4 ops::{Add, AddAssign},
5 sync::Arc,
6 time::Instant,
7};
8
9use dashmap::DashMap;
10use indextree::NodeId;
11use parking_lot::RwLock;
12use rayon::prelude::*;
13use tracing::debug;
14use winit::window::CursorIcon;
15
16use crate::{
17 Clipboard, ComputeCommand, ComputeResourceManager, DrawCommand, Px,
18 cursor::CursorEvent,
19 px::{PxPosition, PxSize},
20 renderer::Command,
21};
22
23use super::constraint::{Constraint, DimensionValue};
24
25/// A ComponentNode is a node in the component tree.
26/// It represents all information about a component.
27pub struct ComponentNode {
28 /// Component function's name, for debugging purposes.
29 pub fn_name: String,
30 /// Describes the component in layout.
31 /// None means using default measure policy which places children at the top-left corner
32 /// of the parent node, with no offset.
33 pub measure_fn: Option<Box<MeasureFn>>,
34 /// Describes the input handler for the component.
35 /// This is used to handle state changes.
36 pub input_handler_fn: Option<Box<InputHandlerFn>>,
37}
38
39/// Contains metadata of the component node.
40#[derive(Default)]
41pub struct ComponentNodeMetaData {
42 /// The computed data (size) of the node.
43 /// None if the node is not computed yet.
44 pub computed_data: Option<ComputedData>,
45 /// The node's start position, relative to its parent.
46 /// None if the node is not placed yet.
47 pub rel_position: Option<PxPosition>,
48 /// The node's start position, relative to the root window.
49 /// This will be computed during drawing command's generation.
50 /// None if the node is not drawn yet.
51 pub abs_position: Option<PxPosition>,
52 /// The effective clipping rectangle for this node, considering all its ancestors.
53 /// This is calculated once per frame before event handling.
54 pub event_clip_rect: Option<crate::PxRect>,
55 /// Commands associated with this node.
56 ///
57 /// This stores both draw and compute commands in a unified vector using the
58 /// new `Command` enum. Commands are collected during the measure phase and
59 /// executed during rendering. The order of commands in this vector determines
60 /// their execution order.
61 pub(crate) commands: Vec<(Command, TypeId)>,
62 /// Whether this node clips its children.
63 pub clips_children: bool,
64}
65
66impl ComponentNodeMetaData {
67 /// Creates a new `ComponentNodeMetaData` with default values.
68 pub fn none() -> Self {
69 Self {
70 computed_data: None,
71 rel_position: None,
72 abs_position: None,
73 event_clip_rect: None,
74 commands: Vec::new(),
75 clips_children: false,
76 }
77 }
78
79 /// Pushes a draw command to the node's metadata.
80 ///
81 /// Draw commands are responsible for rendering visual content (shapes, text, images).
82 /// This method wraps the command in the unified `Command::Draw` variant and adds it
83 /// to the command queue. Commands are executed in the order they are added.
84 ///
85 /// # Example
86 /// ```rust,ignore
87 /// metadata.push_draw_command(ShapeCommand::Rect {
88 /// color: [1.0, 0.0, 0.0, 1.0],
89 /// corner_radius: 8.0,
90 /// shadow: None,
91 /// });
92 /// ```
93 pub fn push_draw_command<C: DrawCommand + 'static>(&mut self, command: C) {
94 let command = Box::new(command);
95 let command = command as Box<dyn DrawCommand>;
96 let command = Command::Draw(command);
97 self.commands.push((command, TypeId::of::<C>()));
98 }
99
100 /// Pushes a compute command to the node's metadata.
101 ///
102 /// Compute commands perform GPU computation tasks (post-processing effects,
103 /// complex calculations). This method wraps the command in the unified
104 /// `Command::Compute` variant and adds it to the command queue.
105 ///
106 /// # Example
107 /// ```rust,ignore
108 /// metadata.push_compute_command(BlurCommand {
109 /// radius: 5.0,
110 /// sigma: 2.0,
111 /// });
112 /// ```
113 pub fn push_compute_command<C: ComputeCommand + 'static>(&mut self, command: C) {
114 let command = Box::new(command);
115 let command = command as Box<dyn ComputeCommand>;
116 let command = Command::Compute(command);
117 self.commands.push((command, TypeId::of::<C>()));
118 }
119}
120
121/// A tree of component nodes, using `indextree::Arena` for storage.
122pub type ComponentNodeTree = indextree::Arena<ComponentNode>;
123/// Contains all component nodes' metadatas, using a thread-safe `DashMap`.
124pub type ComponentNodeMetaDatas = DashMap<NodeId, ComponentNodeMetaData>;
125
126/// Represents errors that can occur during node measurement.
127#[derive(Debug, Clone, PartialEq)]
128pub enum MeasurementError {
129 /// Indicates that the specified node was not found in the component tree.
130 NodeNotFoundInTree,
131 /// Indicates that metadata for the specified node was not found (currently not a primary error source in measure_node).
132 NodeNotFoundInMeta,
133 /// Indicates that the custom measure function (`MeasureFn`) for a node failed.
134 /// Contains a string detailing the failure.
135 MeasureFnFailed(String),
136 /// Indicates that the measurement of a child node failed during a parent's layout calculation (e.g., in `DEFAULT_LAYOUT_DESC`).
137 /// Contains the `NodeId` of the child that failed.
138 ChildMeasurementFailed(NodeId),
139}
140
141/// A `MeasureFn` is a function that takes an input `Constraint` and its children nodes,
142/// finishes placementing inside, and returns its size (`ComputedData`) or an error.
143pub type MeasureFn =
144 dyn Fn(&MeasureInput<'_>) -> Result<ComputedData, MeasurementError> + Send + Sync;
145
146/// Input for the measure function (`MeasureFn`).
147pub struct MeasureInput<'a> {
148 /// The `NodeId` of the current node being measured.
149 pub current_node_id: indextree::NodeId,
150 /// The component tree containing all nodes.
151 pub tree: &'a ComponentNodeTree,
152 /// The effective constraint for this node, merged with its parent's constraint.
153 pub parent_constraint: &'a Constraint,
154 /// The children nodes of the current node.
155 pub children_ids: &'a [indextree::NodeId],
156 /// Metadata for all component nodes, used to access cached data and constraints.
157 pub metadatas: &'a ComponentNodeMetaDatas,
158 /// Compute resources manager
159 pub compute_resource_manager: Arc<RwLock<ComputeResourceManager>>,
160 /// Gpu device
161 pub gpu: &'a wgpu::Device,
162}
163
164impl<'a> MeasureInput<'a> {
165 /// Returns a mutable reference to the metadata of the current node.
166 ///
167 /// This is a convenience method that simplifies accessing the current node's metadata
168 /// from within a `measure` function. It encapsulates the `DashMap::get_mut` call and panics
169 /// if the metadata is not found, as it's an invariant that it must exist.
170 pub fn metadata_mut(&self) -> dashmap::mapref::one::RefMut<'_, NodeId, ComponentNodeMetaData> {
171 self.metadatas
172 .get_mut(&self.current_node_id)
173 .expect("Metadata for current node must exist during measure")
174 }
175
176 /// Measures all specified child nodes under the given constraint.
177 ///
178 /// Returns a map of each child's computed layout data, or the first measurement error encountered.
179 pub fn measure_children(
180 &self,
181 nodes_to_measure: Vec<(NodeId, Constraint)>,
182 ) -> Result<HashMap<NodeId, ComputedData>, MeasurementError> {
183 let results = measure_nodes(
184 nodes_to_measure,
185 self.tree,
186 self.metadatas,
187 self.compute_resource_manager.clone(),
188 self.gpu,
189 );
190
191 let mut successful_results = HashMap::new();
192 for (child_id, result) in results {
193 match result {
194 Ok(size) => successful_results.insert(child_id, size),
195 Err(e) => {
196 debug!("Measurement error for child {child_id:?}: {e:?}");
197 return Err(e);
198 }
199 };
200 }
201 Ok(successful_results)
202 }
203
204 /// Measures a single child node under the given constraint.
205 ///
206 /// Returns the computed layout data or a measurement error.
207 pub fn measure_child(
208 &self,
209 child_id: NodeId,
210 constraint: &Constraint,
211 ) -> Result<ComputedData, MeasurementError> {
212 measure_node(
213 child_id,
214 constraint,
215 self.tree,
216 self.metadatas,
217 self.compute_resource_manager.clone(),
218 self.gpu,
219 )
220 }
221
222 /// Sets the relative position of a child node.
223 pub fn place_child(&self, child_id: NodeId, position: PxPosition) {
224 place_node(child_id, position, self.metadatas);
225 }
226
227 /// Enables clipping for the current node.
228 pub fn enable_clipping(&self) {
229 // Set the clipping flag to true for this node.
230 self.metadata_mut().clips_children = true;
231 }
232
233 /// Disables clipping for the current node.
234 pub fn disable_clipping(&self) {
235 // Set the clipping flag to false for this node.
236 self.metadata_mut().clips_children = false;
237 }
238}
239
240/// A `InputHandlerFn` is a function that handles state changes for a component.
241///
242/// The rule of execution order is:
243///
244/// 1. Children's input handlers are executed earlier than parent's.
245/// 2. Newer components' input handlers are executed earlier than older ones.
246///
247/// Acutally, rule 2 includes rule 1, because a newer component is always a child of an older component :)
248pub type InputHandlerFn = dyn Fn(InputHandlerInput) + Send + Sync;
249
250/// Input for the input handler function (`InputHandlerFn`).
251///
252/// Note that you can modify the `cursor_events` and `keyboard_events` vectors
253/// for exmaple block some keyboard events or cursor events to prevent them from propagating
254/// to parent components and older brother components.
255pub struct InputHandlerInput<'a> {
256 /// The size of the component node, computed during the measure stage.
257 pub computed_data: ComputedData,
258 /// The position of the cursor, if available.
259 /// Relative to the root position of the component.
260 pub cursor_position_rel: Option<PxPosition>,
261 /// The mut ref of absolute position of the cursor in the window.
262 /// Used to block cursor fully if needed, since cursor_position_rel use this.
263 /// Not a public field for now.
264 pub(crate) cursor_position_abs: &'a mut Option<PxPosition>,
265 /// Cursor events from the event loop, if any.
266 pub cursor_events: &'a mut Vec<CursorEvent>,
267 /// Keyboard events from the event loop, if any.
268 pub keyboard_events: &'a mut Vec<winit::event::KeyEvent>,
269 /// IME events from the event loop, if any.
270 pub ime_events: &'a mut Vec<winit::event::Ime>,
271 /// The current state of the keyboard modifiers at the time of the event.
272 /// This allows for implementing keyboard shortcuts (e.g., Ctrl+C).
273 pub key_modifiers: winit::keyboard::ModifiersState,
274 /// A context for making requests to the window for the current frame.
275 pub requests: &'a mut WindowRequests,
276 /// Clipboard
277 pub clipboard: &'a mut Clipboard,
278}
279
280impl InputHandlerInput<'_> {
281 /// Blocks the cursor to other components.
282 pub fn block_cursor(&mut self) {
283 // Block the cursor by setting its position to None.
284 self.cursor_position_abs.take();
285 // Clear all cursor events to prevent them from propagating.
286 self.cursor_events.clear();
287 }
288
289 /// Blocks the keyboard events to other components.
290 pub fn block_keyboard(&mut self) {
291 // Clear all keyboard events to prevent them from propagating.
292 self.keyboard_events.clear();
293 }
294
295 /// Blocks the IME events to other components.
296 pub fn block_ime(&mut self) {
297 // Clear all IME events to prevent them from propagating.
298 self.ime_events.clear();
299 }
300
301 /// Block all events (cursor, keyboard, IME) to other components.
302 pub fn block_all(&mut self) {
303 self.block_cursor();
304 self.block_keyboard();
305 self.block_ime();
306 }
307}
308
309/// A collection of requests that components can make to the windowing system for the current frame.
310/// This struct's lifecycle is confined to a single `compute` pass.
311#[derive(Default, Debug)]
312pub struct WindowRequests {
313 /// The cursor icon requested by a component. If multiple components request a cursor,
314 /// the last one to make a request in a frame "wins", since it's executed later.
315 pub cursor_icon: CursorIcon,
316 /// An Input Method Editor (IME) request.
317 /// If multiple components request IME, the one from the "newer" component (which is
318 /// processed later in the state handling pass) will overwrite previous requests.
319 pub ime_request: Option<ImeRequest>,
320}
321
322/// A request to the windowing system to open an Input Method Editor (IME).
323/// This is typically used for text input components.
324#[derive(Debug)]
325pub struct ImeRequest {
326 /// The size of the area where the IME is requested.
327 pub size: PxSize,
328 /// The absolute position where the IME should be placed.
329 /// This is set internally by the component tree during the compute pass.
330 pub(crate) position: Option<PxPosition>, // should be setted in tessera node tree compute
331}
332
333impl ImeRequest {
334 pub fn new(size: PxSize) -> Self {
335 Self {
336 size,
337 position: None, // Position will be set during the compute phase
338 }
339 }
340}
341
342/// Measures a single node recursively, returning its size or an error.
343///
344/// See [`measure_nodes`] for concurrent measurement of multiple nodes.
345/// Which is very recommended for most cases. You should only use this function
346/// when your're very sure that you only need to measure a single node.
347pub fn measure_node(
348 node_id: NodeId,
349 parent_constraint: &Constraint,
350 tree: &ComponentNodeTree,
351 component_node_metadatas: &ComponentNodeMetaDatas,
352 compute_resource_manager: Arc<RwLock<ComputeResourceManager>>,
353 gpu: &wgpu::Device,
354) -> Result<ComputedData, MeasurementError> {
355 // Make sure metadata and default value exists for the node.
356 component_node_metadatas.insert(node_id, Default::default());
357
358 let node_data_ref = tree
359 .get(node_id)
360 .ok_or(MeasurementError::NodeNotFoundInTree)?;
361 let node_data = node_data_ref.get();
362
363 let children: Vec<_> = node_id.children(tree).collect(); // No .as_ref() needed for &Arena
364 let timer = Instant::now();
365
366 debug!(
367 "Measuring node {} with {} children, parent constraint: {:?}",
368 node_data.fn_name,
369 children.len(),
370 parent_constraint
371 );
372
373 let size = if let Some(measure_fn) = &node_data.measure_fn {
374 measure_fn(&MeasureInput {
375 current_node_id: node_id,
376 tree,
377 parent_constraint,
378 children_ids: &children,
379 metadatas: component_node_metadatas,
380 compute_resource_manager,
381 gpu,
382 })
383 } else {
384 DEFAULT_LAYOUT_DESC(&MeasureInput {
385 current_node_id: node_id,
386 tree,
387 parent_constraint,
388 children_ids: &children,
389 metadatas: component_node_metadatas,
390 compute_resource_manager,
391 gpu,
392 })
393 }?;
394
395 debug!(
396 "Measured node {} in {:?} with size {:?}",
397 node_data.fn_name,
398 timer.elapsed(),
399 size
400 );
401
402 let mut metadata = component_node_metadatas.entry(node_id).or_default();
403 metadata.computed_data = Some(size);
404
405 Ok(size)
406}
407
408/// Places a node at the specified relative position within its parent.
409pub fn place_node(
410 node: indextree::NodeId,
411 rel_position: PxPosition,
412 component_node_metadatas: &ComponentNodeMetaDatas,
413) {
414 component_node_metadatas
415 .entry(node)
416 .or_default()
417 .rel_position = Some(rel_position);
418}
419
420/// A default layout descriptor (`MeasureFn`) that places children at the top-left corner ([0,0])
421/// of the parent node with no offset. Children are measured concurrently using `measure_nodes`.
422pub const DEFAULT_LAYOUT_DESC: &MeasureFn = &|input| {
423 if input.children_ids.is_empty() {
424 // If there are no children, the size depends on the parent_constraint
425 // For Fixed, it's the fixed size. For Wrap/Fill, it's typically 0 if no content.
426 // This part might need refinement based on how min constraints in Wrap/Fill should behave for empty nodes.
427 // For now, returning ZERO, assuming intrinsic size of an empty node is zero before min constraints are applied.
428 // The actual min size enforcement happens when the parent (or this node itself if it has intrinsic min)
429 // considers its own DimensionValue.
430 return Ok(ComputedData::min_from_constraint(input.parent_constraint));
431 }
432
433 let nodes_to_measure: Vec<(NodeId, Constraint)> = input
434 .children_ids
435 .iter()
436 .map(|&child_id| (child_id, *input.parent_constraint)) // Children inherit parent's effective constraint
437 .collect();
438
439 let children_results_map = measure_nodes(
440 nodes_to_measure,
441 input.tree,
442 input.metadatas,
443 input.compute_resource_manager.clone(),
444 input.gpu,
445 );
446
447 let mut aggregate_size = ComputedData::ZERO;
448 let mut first_error: Option<MeasurementError> = None;
449 let mut successful_children_data = Vec::new();
450
451 for &child_id in input.children_ids {
452 match children_results_map.get(&child_id) {
453 Some(Ok(child_size)) => {
454 successful_children_data.push((child_id, *child_size));
455 }
456 Some(Err(e)) => {
457 debug!(
458 "Child node {child_id:?} measurement failed for parent {:?}: {e:?}",
459 input.current_node_id
460 );
461 if first_error.is_none() {
462 first_error = Some(MeasurementError::ChildMeasurementFailed(child_id));
463 }
464 }
465 None => {
466 debug!(
467 "Child node {child_id:?} was not found in measure_nodes results for parent {:?}",
468 input.current_node_id
469 );
470 if first_error.is_none() {
471 first_error = Some(MeasurementError::MeasureFnFailed(format!(
472 "Result for child {child_id:?} missing"
473 )));
474 }
475 }
476 }
477 }
478
479 if let Some(error) = first_error {
480 return Err(error);
481 }
482 if successful_children_data.is_empty() && !input.children_ids.is_empty() {
483 // This case should ideally be caught by first_error if all children failed.
484 // If it's reached, it implies some logic issue.
485 return Err(MeasurementError::MeasureFnFailed(
486 "All children failed to measure or results missing in DEFAULT_LAYOUT_DESC".to_string(),
487 ));
488 }
489
490 // For default layout (stacking), the aggregate size is the max of children's sizes.
491 for (child_id, child_size) in successful_children_data {
492 aggregate_size = aggregate_size.max(child_size);
493 place_node(child_id, PxPosition::ZERO, input.metadatas); // All children at [0,0] for simple stacking
494 }
495
496 // The aggregate_size is based on children. Now apply current node's own constraints.
497 // If current node is Fixed, its size is fixed.
498 // If current node is Wrap, its size is aggregate_size (clamped by its own min/max).
499 // If current node is Fill, its size is aggregate_size (clamped by its own min/max, and parent's available space if parent was Fill).
500 // This final clamping/adjustment based on `parent_constraint` should ideally happen
501 // when `ComputedData` is returned from `measure_node` itself, or by the caller of `measure_node`.
502 // For DEFAULT_LAYOUT_DESC, it should return the size required by its children,
503 // and then `measure_node` will finalize it based on `parent_constraint`.
504
505 // Let's refine: DEFAULT_LAYOUT_DESC should calculate the "natural" size based on children.
506 // Then, `measure_node` (or its caller) would apply the `parent_constraint` to this natural size.
507 // However, `measure_node` currently directly returns the result of `DEFAULT_LAYOUT_DESC` or custom `measure_fn`.
508 // So, `DEFAULT_LAYOUT_DESC` itself needs to consider `parent_constraint` for its final size.
509
510 let mut final_width = aggregate_size.width;
511 let mut final_height = aggregate_size.height;
512
513 match input.parent_constraint.width {
514 DimensionValue::Fixed(w) => final_width = w,
515 DimensionValue::Wrap { min, max } => {
516 if let Some(min_w) = min {
517 final_width = final_width.max(min_w);
518 }
519 if let Some(max_w) = max {
520 final_width = final_width.min(max_w);
521 }
522 }
523 DimensionValue::Fill { min, max } => {
524 // Fill behaves like wrap for default layout unless children expand
525 if let Some(min_w) = min {
526 final_width = final_width.max(min_w);
527 }
528 if let Some(max_w) = max {
529 final_width = final_width.min(max_w);
530 }
531 // If parent was Fill, this node would have gotten a Fill constraint too.
532 // The actual "filling" happens because children might be Fill.
533 // If children are not Fill, this node wraps them.
534 }
535 }
536 match input.parent_constraint.height {
537 DimensionValue::Fixed(h) => final_height = h,
538 DimensionValue::Wrap { min, max } => {
539 if let Some(min_h) = min {
540 final_height = final_height.max(min_h);
541 }
542 if let Some(max_h) = max {
543 final_height = final_height.min(max_h);
544 }
545 }
546 DimensionValue::Fill { min, max } => {
547 if let Some(min_h) = min {
548 final_height = final_height.max(min_h);
549 }
550 if let Some(max_h) = max {
551 final_height = final_height.min(max_h);
552 }
553 }
554 }
555 Ok(ComputedData {
556 width: final_width,
557 height: final_height,
558 })
559};
560
561/// Concurrently measures multiple nodes using Rayon for parallelism.
562pub fn measure_nodes(
563 nodes_to_measure: Vec<(NodeId, Constraint)>,
564 tree: &ComponentNodeTree,
565 component_node_metadatas: &ComponentNodeMetaDatas,
566 compute_resource_manager: Arc<RwLock<ComputeResourceManager>>,
567 gpu: &wgpu::Device,
568) -> HashMap<NodeId, Result<ComputedData, MeasurementError>> {
569 if nodes_to_measure.is_empty() {
570 return HashMap::new();
571 }
572 // metadata must be reseted and initialized for each node to measure.
573 for (node_id, _) in &nodes_to_measure {
574 component_node_metadatas.insert(*node_id, Default::default());
575 }
576 nodes_to_measure
577 .into_par_iter()
578 .map(|(node_id, parent_constraint)| {
579 let result = measure_node(
580 node_id,
581 &parent_constraint,
582 tree,
583 component_node_metadatas,
584 compute_resource_manager.clone(),
585 gpu,
586 );
587 (node_id, result)
588 })
589 .collect::<HashMap<NodeId, Result<ComputedData, MeasurementError>>>()
590}
591
592/// Layout information computed at the measure stage, representing the size of a node.
593#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
594pub struct ComputedData {
595 pub width: Px,
596 pub height: Px,
597}
598
599impl Add for ComputedData {
600 type Output = Self;
601 fn add(self, rhs: Self) -> Self::Output {
602 Self {
603 width: self.width + rhs.width,
604 height: self.height + rhs.height,
605 }
606 }
607}
608
609impl AddAssign for ComputedData {
610 fn add_assign(&mut self, rhs: Self) {
611 *self = *self + rhs;
612 }
613}
614
615impl ComputedData {
616 pub const ZERO: Self = Self {
617 width: Px(0),
618 height: Px(0),
619 };
620
621 /// Calculates a "minimum" size based on a constraint.
622 /// For Fixed, it's the fixed value. For Wrap/Fill, it's their 'min' if Some, else 0.
623 pub fn min_from_constraint(constraint: &Constraint) -> Self {
624 let width = match constraint.width {
625 DimensionValue::Fixed(w) => w,
626 DimensionValue::Wrap { min, .. } => min.unwrap_or(Px(0)),
627 DimensionValue::Fill { min, .. } => min.unwrap_or(Px(0)),
628 };
629 let height = match constraint.height {
630 DimensionValue::Fixed(h) => h,
631 DimensionValue::Wrap { min, .. } => min.unwrap_or(Px(0)),
632 DimensionValue::Fill { min, .. } => min.unwrap_or(Px(0)),
633 };
634 Self { width, height }
635 }
636
637 pub fn min(self, rhs: Self) -> Self {
638 Self {
639 width: self.width.min(rhs.width),
640 height: self.height.min(rhs.height),
641 }
642 }
643
644 pub fn max(self, rhs: Self) -> Self {
645 Self {
646 width: self.width.max(rhs.width),
647 height: self.height.max(rhs.height),
648 }
649 }
650}