tessera_ui/renderer/drawer/pipeline.rs
1//! Graphics rendering pipeline system for Tessera UI framework.
2//!
3//! This module provides the core infrastructure for pluggable graphics rendering pipelines
4//! in Tessera. The design philosophy emphasizes flexibility and extensibility, allowing
5//! developers to create custom rendering effects without being constrained by built-in
6//! drawing primitives.
7//!
8//! # Architecture Overview
9//!
10//! The pipeline system uses a trait-based approach with type erasure to support dynamic
11//! dispatch of rendering commands. Each pipeline is responsible for rendering a specific
12//! type of draw command, such as shapes, text, images, or custom visual effects.
13//!
14//! ## Key Components
15//!
16//! - [`DrawablePipeline<T>`]: The main trait for implementing custom rendering pipelines
17//! - [`PipelineRegistry`]: Manages and dispatches commands to registered pipelines
18//! - [`ErasedDrawablePipeline`]: Internal trait for type erasure and dynamic dispatch
19//!
20//! # Design Philosophy
21//!
22//! Unlike traditional UI frameworks that provide built-in "brush" or drawing primitives,
23//! Tessera treats shaders as first-class citizens. This approach offers several advantages:
24//!
25//! - **Modern GPU Utilization**: Leverages WGPU and WGSL for efficient, cross-platform rendering
26//! - **Advanced Visual Effects**: Enables complex effects like neumorphic design, lighting,
27//! shadows, reflections, and bloom that are difficult to achieve with traditional approaches
28//! - **Flexibility**: Custom shaders allow for unlimited creative possibilities
29//! - **Performance**: Direct GPU programming eliminates abstraction overhead
30//!
31//! # Pipeline Lifecycle
32//!
33//! Each pipeline follows a three-phase lifecycle during rendering:
34//!
35//! 1. **Begin Pass**: Setup phase for initializing pipeline-specific resources
36//! 2. **Draw**: Main rendering phase where commands are processed
37//! 3. **End Pass**: Cleanup phase for finalizing rendering operations
38//!
39//! # Implementation Guide
40//!
41//! ## Creating a Custom Pipeline
42//!
43//! To create a custom rendering pipeline:
44//!
45//! 1. Define your draw command struct implementing [`DrawCommand`]
46//! 2. Create a pipeline struct implementing [`DrawablePipeline<YourCommand>`]
47//! 3. Register the pipeline with [`PipelineRegistry::register`]
48//!
49//! ## Example: Simple Rectangle Pipeline
50//!
51//! ```rust,ignore
52//! use tessera_ui::{DrawCommand, DrawablePipeline, PxPosition, PxSize};
53//! use wgpu;
54//!
55//! // 1. Define the draw command
56//! #[derive(Debug)]
57//! struct RectangleCommand {
58//! color: [f32; 4],
59//! corner_radius: f32,
60//! }
61//!
62//! impl DrawCommand for RectangleCommand {
63//! // Most commands don't need barriers
64//! fn barrier(&self) -> Option<tessera_ui::BarrierRequirement> {
65//! None
66//! }
67//! }
68//!
69//! // 2. Implement the pipeline
70//! struct RectanglePipeline {
71//! render_pipeline: wgpu::RenderPipeline,
72//! uniform_buffer: wgpu::Buffer,
73//! bind_group: wgpu::BindGroup,
74//! }
75//!
76//! impl RectanglePipeline {
77//! fn new(device: &wgpu::Device, config: &wgpu::SurfaceConfiguration, sample_count: u32) -> Self {
78//! // Create shader, pipeline, buffers, etc.
79//! // ... implementation details ...
80//! # unimplemented!()
81//! }
82//! }
83//!
84//! impl DrawablePipeline<RectangleCommand> for RectanglePipeline {
85//! fn draw(
86//! &mut self,
87//! gpu: &wgpu::Device,
88//! gpu_queue: &wgpu::Queue,
89//! config: &wgpu::SurfaceConfiguration,
90//! render_pass: &mut wgpu::RenderPass<'_>,
91//! command: &RectangleCommand,
92//! size: PxSize,
93//! start_pos: PxPosition,
94//! scene_texture_view: &wgpu::TextureView,
95//! ) {
96//! // Update uniforms with command data
97//! // Set pipeline and draw
98//! render_pass.set_pipeline(&self.render_pipeline);
99//! render_pass.set_bind_group(0, &self.bind_group, &[]);
100//! render_pass.draw(0..6, 0..1); // Draw quad
101//! }
102//! }
103//!
104//! // 3. Register the pipeline
105//! let mut registry = PipelineRegistry::new();
106//! let rectangle_pipeline = RectanglePipeline::new(&device, &config, sample_count);
107//! registry.register(rectangle_pipeline);
108//! ```
109//!
110//! # Integration with Basic Components
111//!
112//! The `tessera_basic_components` crate demonstrates real-world pipeline implementations:
113//!
114//! - **ShapePipeline**: Renders rounded rectangles, circles, and complex shapes with shadows and ripple effects
115//! - **TextPipeline**: Handles text rendering with font management and glyph caching
116//! - **ImagePipeline**: Displays images with various scaling and filtering options
117//! - **FluidGlassPipeline**: Creates advanced glass effects with distortion and transparency
118//!
119//! These pipelines are registered in `tessera_ui_basic_components::pipelines::register_pipelines()`.
120//!
121//! # Performance Considerations
122//!
123//! - **Batch Similar Commands**: Group similar draw commands to minimize pipeline switches
124//! - **Resource Management**: Reuse buffers and textures when possible
125//! - **Shader Optimization**: Write efficient shaders optimized for your target platforms
126//! - **State Changes**: Minimize render state changes within the draw method
127//!
128//! # Advanced Features
129//!
130//! ## Barrier Requirements
131//!
132//! Some rendering effects need to sample from previously rendered content (e.g., blur effects).
133//! Implement [`DrawCommand::barrier()`] to return [`BarrierRequirement::SampleBackground`]
134//! for such commands.
135//!
136//! ## Multi-Pass Rendering
137//!
138//! Use `begin_pass()` and `end_pass()` for pipelines that require multiple rendering passes
139//! or complex setup/teardown operations.
140//!
141//! ## Scene Texture Access
142//!
143//! The `scene_texture_view` parameter provides access to the current scene texture,
144//! enabling effects that sample from the background or perform post-processing.
145
146use crate::{PxPosition, px::PxSize, renderer::DrawCommand};
147
148/// Core trait for implementing custom graphics rendering pipelines.
149///
150/// This trait defines the interface for rendering pipelines that process specific types
151/// of draw commands. Each pipeline is responsible for setting up GPU resources,
152/// managing render state, and executing the actual drawing operations.
153///
154/// # Type Parameters
155///
156/// * `T` - The specific [`DrawCommand`] type this pipeline can handle
157///
158/// # Lifecycle Methods
159///
160/// The pipeline system provides five lifecycle hooks, executed in the following order:
161///
162/// 1. [`begin_frame()`](Self::begin_frame): Called once at the start of a new frame, before any render passes.
163/// 2. [`begin_pass()`](Self::begin_pass): Called at the start of each render pass that involves this pipeline.
164/// 3. [`draw()`](Self::draw): Called for each command of type `T` within a render pass.
165/// 4. [`end_pass()`](Self::end_pass): Called at the end of each render pass that involved this pipeline.
166/// 5. [`end_frame()`](Self::end_frame): Called once at the end of the frame, after all render passes are complete.
167///
168/// Typically, `begin_pass`, `draw`, and `end_pass` are used for the core rendering logic within a pass,
169/// while `begin_frame` and `end_frame` are used for setup and teardown that spans the entire frame.
170///
171/// # Implementation Notes
172///
173/// - Only the [`draw()`](Self::draw) method is required; others have default empty implementations.
174/// - Pipelines should be stateless between frames when possible
175/// - Resource management should prefer reuse over recreation
176/// - Consider batching multiple commands for better performance
177///
178/// # Example
179///
180/// See the module-level documentation for a complete implementation example.
181#[allow(unused_variables)]
182pub trait DrawablePipeline<T: DrawCommand> {
183 /// Called once at the beginning of the frame, before any render passes.
184 ///
185 /// This method is the first hook in the pipeline's frame lifecycle. It's invoked
186 /// after a new `CommandEncoder` has been created but before any rendering occurs.
187 /// It's ideal for per-frame setup that is not tied to a specific `wgpu::RenderPass`.
188 ///
189 /// Since this method is called outside a render pass, it cannot be used for drawing
190 /// commands. However, it can be used for operations like:
191 ///
192 /// - Updating frame-global uniform buffers (e.g., with time or resolution data)
193 /// using [`wgpu::Queue::write_buffer`].
194 /// - Preparing or resizing buffers that will be used throughout the frame.
195 /// - Performing CPU-side calculations needed for the frame.
196 ///
197 /// # Parameters
198 ///
199 /// * `gpu` - The WGPU device, for resource creation.
200 /// * `gpu_queue` - The WGPU queue, for submitting buffer writes.
201 /// * `config` - The current surface configuration.
202 ///
203 /// # Default Implementation
204 ///
205 /// The default implementation does nothing.
206 fn begin_frame(
207 &mut self,
208 gpu: &wgpu::Device,
209 gpu_queue: &wgpu::Queue,
210 config: &wgpu::SurfaceConfiguration,
211 ) {
212 }
213
214 /// Called once at the beginning of the render pass.
215 ///
216 /// Use this method to perform one-time setup operations that apply to all
217 /// draw commands of this type in the current frame. This is ideal for:
218 ///
219 /// - Setting up shared uniform buffers
220 /// - Binding global resources
221 /// - Configuring render state that persists across multiple draw calls
222 ///
223 /// # Parameters
224 ///
225 /// * `gpu` - The WGPU device for creating resources
226 /// * `gpu_queue` - The WGPU queue for submitting commands
227 /// * `config` - Current surface configuration
228 /// * `render_pass` - The active render pass
229 ///
230 /// # Default Implementation
231 ///
232 /// The default implementation does nothing, which is suitable for most pipelines.
233 fn begin_pass(
234 &mut self,
235 gpu: &wgpu::Device,
236 gpu_queue: &wgpu::Queue,
237 config: &wgpu::SurfaceConfiguration,
238 render_pass: &mut wgpu::RenderPass<'_>,
239 ) {
240 }
241
242 /// Renders a single draw command.
243 ///
244 /// This is the core method where the actual rendering happens. It's called
245 /// once for each draw command of type `T` that needs to be rendered.
246 ///
247 /// # Parameters
248 ///
249 /// * `gpu` - The WGPU device for creating resources
250 /// * `gpu_queue` - The WGPU queue for submitting commands and updating buffers
251 /// * `config` - Current surface configuration containing format and size information
252 /// * `render_pass` - The active render pass to record draw commands into
253 /// * `command` - The specific draw command to render
254 /// * `size` - The size of the rendering area in pixels
255 /// * `start_pos` - The top-left position where rendering should begin
256 /// * `scene_texture_view` - View of the current scene texture for background sampling
257 ///
258 /// # Implementation Guidelines
259 ///
260 /// - Update any per-command uniforms or push constants
261 /// - Set the appropriate render pipeline
262 /// - Bind necessary resources (textures, buffers, bind groups)
263 /// - Issue draw calls (typically `draw()`, `draw_indexed()`, or `draw_indirect()`)
264 /// - Avoid expensive operations like buffer creation; prefer reusing resources
265 ///
266 /// # Scene Texture Usage
267 ///
268 /// The `scene_texture_view` provides access to the current rendered scene,
269 /// enabling effects that sample from the background. This is commonly used for:
270 ///
271 /// - Blur and post-processing effects
272 /// - Glass and transparency effects
273 /// - Distortion and refraction
274 ///
275 /// # Example
276 ///
277 /// ```rust,ignore
278 /// fn draw(&mut self, gpu: &wgpu::Device, gpu_queue: &wgpu::Queue,
279 /// config: &wgpu::SurfaceConfiguration, render_pass: &mut wgpu::RenderPass<'_>,
280 /// command: &MyCommand, size: PxSize, start_pos: PxPosition,
281 /// scene_texture_view: &wgpu::TextureView) {
282 /// // Update uniforms with command-specific data
283 /// let uniforms = MyUniforms {
284 /// color: command.color,
285 /// position: [start_pos.x as f32, start_pos.y as f32],
286 /// size: [size.width as f32, size.height as f32],
287 /// };
288 /// gpu_queue.write_buffer(&self.uniform_buffer, 0, bytemuck::cast_slice(&[uniforms]));
289 ///
290 /// // Set pipeline and resources
291 /// render_pass.set_pipeline(&self.render_pipeline);
292 /// render_pass.set_bind_group(0, &self.bind_group, &[]);
293 ///
294 /// // Draw a quad (two triangles)
295 /// render_pass.draw(0..6, 0..1);
296 /// }
297 /// ```
298 fn draw(
299 &mut self,
300 gpu: &wgpu::Device,
301 gpu_queue: &wgpu::Queue,
302 config: &wgpu::SurfaceConfiguration,
303 render_pass: &mut wgpu::RenderPass<'_>,
304 command: &T,
305 size: PxSize,
306 start_pos: PxPosition,
307 scene_texture_view: &wgpu::TextureView,
308 );
309
310 /// Called once at the end of the render pass.
311 ///
312 /// Use this method to perform cleanup operations or finalize rendering
313 /// for all draw commands of this type in the current frame. This is useful for:
314 ///
315 /// - Cleaning up temporary resources
316 /// - Finalizing multi-pass rendering operations
317 /// - Submitting batched draw calls
318 ///
319 /// # Parameters
320 ///
321 /// * `gpu` - The WGPU device for creating resources
322 /// * `gpu_queue` - The WGPU queue for submitting commands
323 /// * `config` - Current surface configuration
324 /// * `render_pass` - The active render pass
325 ///
326 /// # Default Implementation
327 ///
328 /// The default implementation does nothing, which is suitable for most pipelines.
329 fn end_pass(
330 &mut self,
331 gpu: &wgpu::Device,
332 gpu_queue: &wgpu::Queue,
333 config: &wgpu::SurfaceConfiguration,
334 render_pass: &mut wgpu::RenderPass<'_>,
335 ) {
336 }
337
338 /// Called once at the end of the frame, after all render passes are complete.
339 ///
340 /// This method is the final hook in the pipeline's frame lifecycle. It's invoked
341 /// after all `begin_pass`, `draw`, and `end_pass` calls for the frame have
342 /// completed, but before the frame's command buffer is submitted to the GPU.
343 ///
344 /// It's suitable for frame-level cleanup or finalization tasks, such as:
345 ///
346 /// - Reading data back from the GPU (though this can be slow and should be used sparingly).
347 /// - Cleaning up temporary resources created in `begin_frame`.
348 /// - Preparing data for the next frame.
349 ///
350 /// # Parameters
351 ///
352 /// * `gpu` - The WGPU device.
353 /// * `gpu_queue` - The WGPU queue.
354 /// * `config` - The current surface configuration.
355 ///
356 /// # Default Implementation
357 ///
358 /// The default implementation does nothing.
359 fn end_frame(
360 &mut self,
361 gpu: &wgpu::Device,
362 gpu_queue: &wgpu::Queue,
363 config: &wgpu::SurfaceConfiguration,
364 ) {
365 }
366}
367
368/// Internal trait for type erasure of drawable pipelines.
369///
370/// This trait enables dynamic dispatch of draw commands to their corresponding pipelines
371/// without knowing the specific command type at compile time. It's used internally by
372/// the [`PipelineRegistry`] and should not be implemented directly by users.
373///
374/// The type erasure is achieved through the [`AsAny`] trait, which allows downcasting
375/// from `&dyn DrawCommand` to concrete command types.
376///
377/// # Implementation Note
378///
379/// This trait is automatically implemented for any type that implements
380/// [`DrawablePipeline<T>`] through the [`DrawablePipelineImpl`] wrapper.
381pub trait ErasedDrawablePipeline {
382 fn begin_frame(
383 &mut self,
384 gpu: &wgpu::Device,
385 gpu_queue: &wgpu::Queue,
386 config: &wgpu::SurfaceConfiguration,
387 );
388 fn end_frame(
389 &mut self,
390 gpu: &wgpu::Device,
391 gpu_queue: &wgpu::Queue,
392 config: &wgpu::SurfaceConfiguration,
393 );
394 fn begin_pass(
395 &mut self,
396 gpu: &wgpu::Device,
397 gpu_queue: &wgpu::Queue,
398 config: &wgpu::SurfaceConfiguration,
399 render_pass: &mut wgpu::RenderPass<'_>,
400 );
401
402 fn end_pass(
403 &mut self,
404 gpu: &wgpu::Device,
405 gpu_queue: &wgpu::Queue,
406 config: &wgpu::SurfaceConfiguration,
407 render_pass: &mut wgpu::RenderPass<'_>,
408 );
409
410 fn draw_erased(
411 &mut self,
412 gpu: &wgpu::Device,
413 gpu_queue: &wgpu::Queue,
414 config: &wgpu::SurfaceConfiguration,
415 render_pass: &mut wgpu::RenderPass<'_>,
416 command: &dyn DrawCommand,
417 size: PxSize,
418 start_pos: PxPosition,
419 scene_texture_view: &wgpu::TextureView,
420 ) -> bool;
421}
422
423struct DrawablePipelineImpl<T: DrawCommand, P: DrawablePipeline<T>> {
424 pipeline: P,
425 _marker: std::marker::PhantomData<T>,
426}
427
428impl<T: DrawCommand + 'static, P: DrawablePipeline<T> + 'static> ErasedDrawablePipeline
429 for DrawablePipelineImpl<T, P>
430{
431 fn begin_frame(
432 &mut self,
433 gpu: &wgpu::Device,
434 gpu_queue: &wgpu::Queue,
435 config: &wgpu::SurfaceConfiguration,
436 ) {
437 self.pipeline.begin_frame(gpu, gpu_queue, config);
438 }
439
440 fn end_frame(
441 &mut self,
442 gpu: &wgpu::Device,
443 gpu_queue: &wgpu::Queue,
444 config: &wgpu::SurfaceConfiguration,
445 ) {
446 self.pipeline.end_frame(gpu, gpu_queue, config);
447 }
448
449 fn begin_pass(
450 &mut self,
451 gpu: &wgpu::Device,
452 gpu_queue: &wgpu::Queue,
453 config: &wgpu::SurfaceConfiguration,
454 render_pass: &mut wgpu::RenderPass<'_>,
455 ) {
456 self.pipeline
457 .begin_pass(gpu, gpu_queue, config, render_pass);
458 }
459
460 fn end_pass(
461 &mut self,
462 gpu: &wgpu::Device,
463 gpu_queue: &wgpu::Queue,
464 config: &wgpu::SurfaceConfiguration,
465 render_pass: &mut wgpu::RenderPass<'_>,
466 ) {
467 self.pipeline.end_pass(gpu, gpu_queue, config, render_pass);
468 }
469
470 fn draw_erased(
471 &mut self,
472 gpu: &wgpu::Device,
473 gpu_queue: &wgpu::Queue,
474 config: &wgpu::SurfaceConfiguration,
475 render_pass: &mut wgpu::RenderPass<'_>,
476 command: &dyn DrawCommand,
477 size: PxSize,
478 start_pos: PxPosition,
479 scene_texture_view: &wgpu::TextureView,
480 ) -> bool {
481 if let Some(cmd) = command.as_any().downcast_ref::<T>() {
482 self.pipeline.draw(
483 gpu,
484 gpu_queue,
485 config,
486 render_pass,
487 cmd,
488 size,
489 start_pos,
490 scene_texture_view,
491 );
492 true
493 } else {
494 false
495 }
496 }
497}
498
499/// Registry for managing and dispatching drawable pipelines.
500///
501/// The `PipelineRegistry` serves as the central hub for all rendering pipelines in the
502/// Tessera framework. It maintains a collection of registered pipelines and handles
503/// the dispatch of draw commands to their appropriate pipelines.
504///
505/// # Architecture
506///
507/// The registry uses type erasure to store pipelines of different types in a single
508/// collection. When a draw command needs to be rendered, the registry iterates through
509/// all registered pipelines until it finds one that can handle the command type.
510///
511/// # Usage Pattern
512///
513/// 1. Create a new registry
514/// 2. Register all required pipelines during application initialization
515/// 3. The renderer uses the registry to dispatch commands during frame rendering
516///
517/// # Example
518///
519/// ```rust,ignore
520/// use tessera_ui::renderer::drawer::PipelineRegistry;
521///
522/// // Create registry and register pipelines
523/// let mut registry = PipelineRegistry::new();
524/// registry.register(my_shape_pipeline);
525/// registry.register(my_text_pipeline);
526/// registry.register(my_image_pipeline);
527///
528/// // Registry is now ready for use by the renderer
529/// ```
530///
531/// # Performance Considerations
532///
533/// - Pipeline lookup is O(n) where n is the number of registered pipelines
534/// - Register frequently used pipelines first for better average performance
535/// - Consider the order of registration based on command frequency
536pub struct PipelineRegistry {
537 pub(crate) pipelines: Vec<Box<dyn ErasedDrawablePipeline>>,
538}
539
540impl Default for PipelineRegistry {
541 fn default() -> Self {
542 Self::new()
543 }
544}
545
546impl PipelineRegistry {
547 /// Creates a new empty pipeline registry.
548 ///
549 /// # Example
550 ///
551 /// ```
552 /// use tessera_ui::renderer::drawer::PipelineRegistry;
553 ///
554 /// let registry = PipelineRegistry::new();
555 /// ```
556 pub fn new() -> Self {
557 Self {
558 pipelines: Vec::new(),
559 }
560 }
561
562 /// Registers a new drawable pipeline for a specific command type.
563 ///
564 /// This method takes ownership of the pipeline and wraps it in a type-erased
565 /// container that can be stored alongside other pipelines of different types.
566 ///
567 /// # Type Parameters
568 ///
569 /// * `T` - The [`DrawCommand`] type this pipeline handles
570 /// * `P` - The pipeline implementation type
571 ///
572 /// # Parameters
573 ///
574 /// * `pipeline` - The pipeline instance to register
575 ///
576 /// # Panics
577 ///
578 /// This method does not panic, but the registry will panic during dispatch
579 /// if no pipeline is found for a given command type.
580 ///
581 /// # Example
582 ///
583 /// ```rust,ignore
584 /// use tessera_ui::renderer::drawer::PipelineRegistry;
585 ///
586 /// let mut registry = PipelineRegistry::new();
587 ///
588 /// // Register a custom pipeline
589 /// let my_pipeline = MyCustomPipeline::new(&device, &config, sample_count);
590 /// registry.register(my_pipeline);
591 ///
592 /// // Register multiple pipelines
593 /// registry.register(ShapePipeline::new(&device, &config, sample_count));
594 /// registry.register(TextPipeline::new(&device, &config, sample_count));
595 /// ```
596 ///
597 /// # Registration Order
598 ///
599 /// The order of registration can affect performance since pipeline lookup
600 /// is performed linearly. Consider registering more frequently used pipelines first.
601 pub fn register<T: DrawCommand + 'static, P: DrawablePipeline<T> + 'static>(
602 &mut self,
603 pipeline: P,
604 ) {
605 let erased = Box::new(DrawablePipelineImpl::<T, P> {
606 pipeline,
607 _marker: std::marker::PhantomData,
608 });
609 self.pipelines.push(erased);
610 }
611
612 pub(crate) fn begin_all_passes(
613 &mut self,
614 gpu: &wgpu::Device,
615 gpu_queue: &wgpu::Queue,
616 config: &wgpu::SurfaceConfiguration,
617 render_pass: &mut wgpu::RenderPass<'_>,
618 ) {
619 for pipeline in self.pipelines.iter_mut() {
620 pipeline.begin_pass(gpu, gpu_queue, config, render_pass);
621 }
622 }
623
624 pub(crate) fn end_all_passes(
625 &mut self,
626 gpu: &wgpu::Device,
627 gpu_queue: &wgpu::Queue,
628 config: &wgpu::SurfaceConfiguration,
629 render_pass: &mut wgpu::RenderPass<'_>,
630 ) {
631 for pipeline in self.pipelines.iter_mut() {
632 pipeline.end_pass(gpu, gpu_queue, config, render_pass);
633 }
634 }
635
636 pub(crate) fn begin_all_frames(
637 &mut self,
638 gpu: &wgpu::Device,
639 gpu_queue: &wgpu::Queue,
640 config: &wgpu::SurfaceConfiguration,
641 ) {
642 for pipeline in self.pipelines.iter_mut() {
643 pipeline.begin_frame(gpu, gpu_queue, config);
644 }
645 }
646
647 pub(crate) fn end_all_frames(
648 &mut self,
649 gpu: &wgpu::Device,
650 gpu_queue: &wgpu::Queue,
651 config: &wgpu::SurfaceConfiguration,
652 ) {
653 for pipeline in self.pipelines.iter_mut() {
654 pipeline.end_frame(gpu, gpu_queue, config);
655 }
656 }
657
658 pub(crate) fn dispatch(
659 &mut self,
660 gpu: &wgpu::Device,
661 gpu_queue: &wgpu::Queue,
662 config: &wgpu::SurfaceConfiguration,
663 render_pass: &mut wgpu::RenderPass<'_>,
664 cmd: &dyn DrawCommand,
665 size: PxSize,
666 start_pos: PxPosition,
667 scene_texture_view: &wgpu::TextureView,
668 ) {
669 for pipeline in self.pipelines.iter_mut() {
670 if pipeline.draw_erased(
671 gpu,
672 gpu_queue,
673 config,
674 render_pass,
675 cmd,
676 size,
677 start_pos,
678 scene_texture_view,
679 ) {
680 return;
681 }
682 }
683
684 panic!(
685 "No pipeline found for command {:?}",
686 std::any::type_name_of_val(cmd)
687 );
688 }
689}