pub struct RippleState {
pub is_animating: AtomicBool,
pub start_time: AtomicU64,
pub click_pos_x: AtomicI32,
pub click_pos_y: AtomicI32,
pub is_hovered: AtomicBool,
}
Expand description
RippleState
manages the animation and hover state for ripple effects in interactive UI components.
It is designed to be shared across components using Arc<RippleState>
, enabling coordinated animation and hover feedback.
§Example
use std::sync::Arc;
use tessera_ui_basic_components::ripple_state::RippleState;
// Create a new ripple state and share it with a button or surface
let ripple_state = Arc::new(RippleState::new());
// Start a ripple animation at a given position (e.g., on mouse click)
ripple_state.start_animation([0.5, 0.5]);
// In your component's render or animation loop:
if let Some((progress, center)) = ripple_state.get_animation_progress() {
// Use progress (0.0..1.0) and center ([f32; 2]) to drive the ripple effect
}
// Set hover state on pointer enter/leave
ripple_state.set_hovered(true);
Fields§
§is_animating: AtomicBool
Whether the ripple animation is currently active.
start_time: AtomicU64
The animation start time, stored as milliseconds since the Unix epoch.
click_pos_x: AtomicI32
The X coordinate of the click position, stored as fixed-point (multiplied by 1000).
click_pos_y: AtomicI32
The Y coordinate of the click position, stored as fixed-point (multiplied by 1000).
is_hovered: AtomicBool
Whether the pointer is currently hovering over the component.
Implementations§
Source§impl RippleState
impl RippleState
Sourcepub fn new() -> Self
pub fn new() -> Self
Creates a new RippleState
with default values.
§Example
use tessera_ui_basic_components::ripple_state::RippleState;
let state = RippleState::new();
Sourcepub fn start_animation(&self, click_pos: [f32; 2])
pub fn start_animation(&self, click_pos: [f32; 2])
Starts a new ripple animation from the given click position.
§Arguments
click_pos
- The normalized[x, y]
position (typically in the range [0.0, 1.0]) where the ripple originates.
§Example
use tessera_ui_basic_components::ripple_state::RippleState;
let state = RippleState::new();
state.start_animation([0.5, 0.5]);
Sourcepub fn get_animation_progress(&self) -> Option<(f32, [f32; 2])>
pub fn get_animation_progress(&self) -> Option<(f32, [f32; 2])>
Returns the current progress of the ripple animation and the origin position.
Returns Some((progress, [x, y]))
if the animation is active, where:
progress
is a value in[0.0, 1.0)
representing the animation progress.[x, y]
is the normalized origin of the ripple.
Returns None
if the animation is not active or has completed.
§Example
use tessera_ui_basic_components::ripple_state::RippleState;
let state = RippleState::new();
state.start_animation([0.5, 0.5]);
if let Some((progress, center)) = state.get_animation_progress() {
// Use progress and center for rendering
}
Sourcepub fn set_hovered(&self, hovered: bool)
pub fn set_hovered(&self, hovered: bool)
Sourcepub fn is_hovered(&self) -> bool
pub fn is_hovered(&self) -> bool
Returns whether the pointer is currently hovering over the component.
§Example
use tessera_ui_basic_components::ripple_state::RippleState;
let state = RippleState::new();
let hovered = state.is_hovered();
Trait Implementations§
Auto Trait Implementations§
impl !Freeze for RippleState
impl RefUnwindSafe for RippleState
impl Send for RippleState
impl Sync for RippleState
impl Unpin for RippleState
impl UnwindSafe for RippleState
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait>
(where Trait: Downcast
) to Box<dyn Any>
. Box<dyn Any>
can
then be further downcast
into Box<ConcreteType>
where ConcreteType
implements Trait
.§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait>
(where Trait: Downcast
) to Rc<Any>
. Rc<Any>
can then be
further downcast
into Rc<ConcreteType>
where ConcreteType
implements Trait
.§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &Any
’s vtable from &Trait
’s.§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait
(where Trait: Downcast
) to &Any
. This is needed since Rust cannot
generate &mut Any
’s vtable from &mut Trait
’s.§impl<T> DowncastSync for T
impl<T> DowncastSync for T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<R, P> ReadPrimitive<R> for P
impl<R, P> ReadPrimitive<R> for P
Source§fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
fn read_from_little_endian(read: &mut R) -> Result<Self, Error>
ReadEndian::read_from_little_endian()
.